
Bounded Integer Linear Constraint Solving
via Lattice Search

Joe Hendrix and Benjamin F Jones
Galois Inc., Portland,OR

jhendrix@galois.com, bjones@galois.com

Abstract

We present a novel algorithm for solving integer linear constraint problems of the form
l ≤ Ax ≤ u. Our approach is based on techniques used to solve the closest vector
problem for lattices, but adapted to use the L∞ distance metric. We have implemented
this algorithm in a constraint solver called BLT.

The BLT solver was motivated by efforts to apply SMT solvers to signal processing algo-
rithms. In particular, we describe here the problem of reversing JPEG, that is, finding
compressed data that decompress into an image satisfying given constraints. This problem
can be expressed as a bounded integer linear constraint problem, but was intractable to the
SMT solvers we tried. In contrast, BLT is able to solve many of the examples in seconds,
including both SAT and UNSAT problems.

1 Introduction

In this paper, we present a decision procedure for solving systems of integer linear constraints
where each expression is subject to both upper and lower bounds. Such systems have the form:

l1 ≤ a11x1 + · · · + a1nxn ≤ u1
l2 ≤ a21x1 + · · · + a2nxn ≤ u2
...

...
...

lm ≤ am1x1 + · · · + amnxn ≤ um

(1)

where li, ui, aij are rational constants and the xi are unknown integer variables. As a more
compact notation, we use l ≤ Ax ≤ u to denote systems with this form.

Our decision procedure is based on a variant of the Schnorr-Euchner algorithm [15] for com-
puting the closest lattice element to a target point, and is implemented in a tool which we
call BLT. The decision procedure reduces the constraint problem to the problem of checking
whether there is a common point y in both the lattice LA generated by the columns of A and
the hyperrectangle containing the points between l and u.

We developed BLT while trying to apply constraint solving to signal processing algorithms.
In particular, we were studying the problem of reversing JPEG decompression, that is finding
JPEGs that decompress into images that satisfy given constraints. This could be used to encode
specific values on pixels in the image, perhaps for steganographic purposes. As we will show,
this problem can be expressed as an integer linear constraint problem with the form (1) over
64 variables.

1

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

Before developing BLT, we had generated various instances of this problem, including both un-
satisfiable and satisfiable cases. We applied several SMT solvers, including Yices [7], CVC4 [3],
and Z3 [6], as well as an evaluation version of Gurobi1, an industrial linear programming solver.
The solvers we tried were incapable of solving all but the most trivial instances of this problem
without giving additional hints. This was true even when after running some of the problems
for months on selected solvers. In contrast, BLT is able to solve the majority of the problems
in under a second.

2 Preliminaries

Throughout this section we use bold capital letter symbols such as A to denote matrices, bold
lower case letters such as x to denote vectors, and undecorated lower case letters to denote
scalars. The components of a vector x ∈ Rn are denoted by xi with i ∈ {1, . . . , n}. We use
Greek letters such as θ to denote functions that assign values to only some of the coordinates
(e.g., the function θ : Y → Z with Y ⊆ { 1 . . . , n} only assigns values to indices in Y). A vectors
x is then just an assignment where all the indices have been assigned.

Lattices. A lattice is a discrete additive subgroup of a Euclidean space. A subset L ⊂ Rn

is a lattice if and only if there is a collection of linearly independent vectors v1, . . . , vn ∈ Rn

such that L = {
∑n

i=1 civi | ci ∈ Z}. Such a collection is called a basis of L and the number
n is called the rank. A lattice generally has many different bases. Lattice reduction is a term
used to describe algorithms for producing a basis that is “short” and “nearly orthogonal”, a
property that is extremely useful in practice [12].

Given a fixed basis {v1, . . . , vn} of L and a partial assignment θ : Y → Z with Y ⊆ { 1 . . . , n},
we define the set of lattice elements Lθ ⊆ L as follows:

Lθ :=

{
n∑

i=1
civi | ci ∈ Z, i ∈ dom(θ) ⇒ ci = θ(i)

}
.

We call Lθ a sublayer of L. The set Lθ should be thought of as the subset of lattice elements
which remain after a partial assignment of coefficients is made.

Our algorithm for finding integer solutions will rely on an underlying solver for systems of real
solutions. To model this, we define the real-affine linear space LR

θ containing Lθ:

LR
θ :=

{
n∑

i=1
civi | ci ∈ R, i ∈ dom(θ) ⇒ ci = θ(i)

}
.

A fundamental problem in the theory of lattices is the closest vector problem (CVP) [12]. We
introduce it here because it is very closely related to our approach for solving bounded ILP.
CVP has the following form: given a lattice L ⊂ Rn and a point q ∈ Rn, find a vector z ∈ L
that is closest to q; i.e. a vector for which ‖z − q‖ is minimal. Such a closest vector must exist,
but it may be difficult to compute and may not be unique. The problem of deciding whether
such a vector exists within a given bound is known to be NP-hard [9], though polynomial-time
algorithms are known if the rank of L is fixed [14].

1Available at http://www.gurobi.com/.

2

http://www.gurobi.com/

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

L∞ Metric. In our decision procedure, we work in Rn with a different metric than the usual
Euclidean metric. The L∞ norm is defined by ‖x‖∞ := max{|xi| | i = 1, . . . , n}. It determines
a metric via d∞(x, y) := ‖x − y‖∞.

With L∞, the set of points whose distance from a given point p is at most r (i.e. the closed ball
of radius r around p) is a hypercube (the n-dimensional analogue of a square) each of whose
faces is orthogonal to a coordinate axis. Explicitly,

{x ∈ Rn | d∞(x, p) ≤ r} = {(x1, . . . , xn) | pi − r ≤ xi ≤ pi + r} .

The distance metric can be extended to subsets of Rn by taking it to be the minimum distance
between any two points in the subsets, i.e., for X, Y ⊆ Rn,

d∞(X, Y) := min
(x,y)∈X×Y

d∞(x, y)

We remark that when the sets X and Y can be defined by systems of linear equality and
inequality constraints over rational coefficients, then the L∞ distance can be calculated using
linear programming techniques by observing that:

d∞(X, Y) = min { d∞(x, y) | x ∈ X, y ∈ Y }

= min
{

max
i

{|xi − yi|} | x ∈ X, y ∈ Y
}

= min { t | |xi − yi| ≤ t, x ∈ X, y ∈ Y }
= min { t | xi − yi ≤ t, −(xi − yi) ≤ t, x ∈ X y ∈ Y } (2)

The last line is a real linear optimization problem over the free variables in the systems of
equations used to define X and Y .

3 The BLT Decision Procedure

To describe our decision procedure, we assume that we are attempting to check whether the
constraints below are satisfiable:

l ≤ Ax ≤ u. (P1)
We let n denote the number of free integer variables in x ∈ Zn, and let m denote the number
of constrained linear forms. The coefficients are rational, so A ∈ Qm×n and l, u ∈ Qm.

Without loss of generality we assume that n ≤ m and that A has rank n (full rank). In case the
problem at hand is such that n > m and/or that A is less than full rank, one can compute a
basis of the column space, say A′, that meets the requirement (cf. [4], § 2.7.1). The new system
l ≤ A′y ≤ u is equisatisfiable with the original and solutions of the new system determine one
or more solutions of the original.

Geometrically, we can think of l and u as opposite corners of an m-dimensional hyperrectangle
defined by

C := {z ∈ Rm | li ≤ zi ≤ ui}.

We refer to this as the constraint set of the problem. Without loss of generality we may scale
the rows of (P1) so that the width of C is the same along every axis, i.e.

ui − li = uj − lj ∀ i, j ∈ {1, . . . , m}.

3

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

Note that this transformation makes C a hypercube. We let dC denote the common width, and
let rC = dC/2 denote the corresponding radius of the hypercube.

The problem given by (P1) can also be characterized as trying to find a common point in both
a hypercube and a lattice. The columns of A, regarded as vectors, generate a lattice. Let
{b1, b2, . . . , bn} denote the column vectors of A and define:

L := {a1b1 + · · · + anbn ∈ Rm | ai ∈ Z}

By our assumption that A has full rank, {b1, . . . , bn} are linearly independent, and there is
a one-to-one correspondance between elements in L ∩ C and satifying assignments to (P1).
It follows that checking the satisfiability of (P1) is equivalent to deciding whether L ∩ C is
non-empty.

The set L∩C is guaranteed to be finite as a lattice must have a finite number of elements in any
space with a bounded volume. Due to the one-to-one correspondance, the number of solutions
to (P1) must be finite as well, and hence a procedure capable of enumerating the elements in
L ∩ C can be used as a decision procedure for checking the satisfiability of (P1).

Before describing such a procedure, we note that a nice feature of the lattice and hypercube
formulation is that it provides a simple way to estimate the number of satisfying assignments.
The volume of a lattice L can be defined in several ways (see [12], §5), but the simplest com-
putationally is vol(L) = |det B| where the columns of B generate L. Then, the number of
elements of L ∩ C is approximately vol C / vol L. We will use this to compute the number of
expected solutions for the JPEG preimage problems described in the Section 4.

3.1 Enumerating Lattice Elements

We now turn our attention to the problem of enumerating the elements L ∩ C. Recall that,
without loss of generality, we have taken C to be a hypercube. Let p denote the geometric
center of C:

p := (l1 + u1

2
, . . . ,

lm + um

2
).

With respect to the L∞ metric, C is a closed ball of radius rC , centered at p, and hence the
elements in L ∩ C are precisely those that are at most a distance rC from p.

Algorithms for finding lattice elements that are close to a given point have been extensively
studied and many algorithmic approaches to it exist; see [2] for a good survey. We have devel-
oped a complete search procedure by adapting the Schnorr-Euchner algorithm for computing
the closest vector point to a lattice [15].

We model our search procedure as a non-deterministic transition rule on partial assignments to
the vectors x. The procedure begins with the empty assignment ∅, and incrementally assigns
values to variables in x. If the transition rule terminates with a complete assignment u ∈ Zn,
then u is a solution to the constraint problem.

(Split) θ ⇒ θ ∪ { j 7→ s } where
{

j ∈ { 1, . . . , n } \ dom(θ)
s ∈ Z s.t. LR

θ∪{ j 7→s } ∩ C 6= ∅

This rule takes a partial assignment θ, and extends it with an additional binding j 7→ s such
that the real-affine linear space LR

θ∪{ j 7→s } of the resulting assignment intersects with C. This

4

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

rule models backtracking implicitly; at each step, we may find that there is no legal value s
to assign j. If this occurs, our procedure must backtrack to a previous step, and explore an
alternative assignment.

We can show that the set of lattice points in C can be enumerated by applying Split transitively
starting from ∅. Before stating the theorem, we first observe that each point x ∈ L can be
expressed as the weighted sum of the columns in A, (i.e., x = Au for some unique u ∈ Zn).

Theorem 3.1. For each vector u ∈ Zn, Au ∈ C iff. there is a derivation ∅ ⇒+ u.

Proof. To see that ∅ ⇒+ u implies Au ∈ C, observe that the proceeding step must have shown
that LR

u ∩ C 6= ∅. Since u is a complete assignment, LR
u = { Au }, and hence Au ∈ C.

To see that Au ∈ C implies ∅ ⇒+ u, observe that for all partial assignments θ, LR
θ ∩ C 6= ∅

implies that ∅ ⇒+ θ by induction on the number of bindings in θ. For a complete assignment
u, LR

u = { Au}. Hence, if Au is in C, then LR
u is a non-empty subset of C and ∅ ⇒+ u.

We note that the above theorem holds regardless of the order in which we choose the values
of j in Split. We only need to consider all valid assignments to s once we have chosen j.
An implementation then has a choice in which it can use different heuristics to search for an
assignment. We will briefly describe the heuristics used by BLT in Section 3.2.

The previous theorem shows that the transition rule is sound and complete from a logical point
of view, to show that it is computable we prove the following:

Theorem 3.2. The set of partial assignments θ such that ∅ ⇒+ θ is finite and computable.

Proof. As each application of Split adds an additional binding to the substitution, the number
of applications along any path is bounded by n. To show that the set of θ is finite, we must show
that the number of potential values of s used to instantiate Split is both finite and computable.
More precisely, we must prove that there are at most a finite number of integers s ∈ Z such
that

LR
θ∪{ j 7→s } ∩ C 6= ∅. (3)

Observe that for any u, k ∈ Z with k 6= 0, the affine set LR
θ∪{ j 7→u+k } can be obtained by shifting

the set LR
θ∪{ j 7→u } by a multiple k of the basis vector bj . As bj is linearly independent from

the other basis vectors, it follows that LR
θ∪{ j 7→u } and LR

θ∪{ j 7→u+k } are disjoint and separated
by some positive distance k × dθ,j where dθ,j is the distance between the adjacent hyperplanes
LR

θ∪{ j 7→0 } and LR
θ∪{ j 7→1 } As the distance between any two points x, y ∈ C is at most dC , it

follows that the number of distinct s satisfying (3) is at most dC/dθ,j . Moreover, as both C and
LR

θ∪{ j 7→s } are convex, there must be a bounded interval s ∈ { l, l + 1, . . . , u − 1, u } of values
satisfying (3).

Rather than compute the bounds explicitly, we compute the L∞-distance between LR
θ and the

point p at the center of C using the reduction to linear programming described at the end
of the Section 2 in equation (2). This reduction to linear programming allows one to find an
assignment y ∈ Rn so that Ay is one of the points in LR

θ with minimal distance to p. We can
then start by considering for s the points { byjc, byj − 1c, . . . } and { dyje, dyj + 1e, . . . } until
we have explored all the assignments in the set { l, l + 1, . . . , u }.

5

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

3.2 Implementation Decisions

Turning the previous section into a working and efficient procedure involves many more choices
and details than we have room to describe. We would like to indicate, however a couple choices
we have made in implementing BLT.

Search Strategy. In implementing the transition system, we have chosen to adopt a strategy
similar to Schnorr and Euchner in [15]. We use the LLL algorithm [12] to generate a reduced
basis, and fix the basis vectors by sorting in order of decreasing L2 magnitude. We then proceed
by applying Split in a depth first order with the sequence of j’s chosen according to our basis
order. The variables with the largest magnitude are typically the most-constrained variables
in our problems, as they have the largest distance between adjacent sublayers. Choosing the
most constrained variable is a common strategy in constraint satisfication, and we have found
the strategy effective in this case as well.

The other choice we have with split is to consider which values of s to explore. To maximize the
likelihood of finding a satisfying assignment, we would like to choose a value for s that imposes
the least constraints on subsequent assignments. This could be done by choosing an assignment
to s that maximizes the volume of the intersection between the hypercube C and real-affine set
LR

θ∪{ j 7→s }.

Unfortunately, we do not know of an efficient way to compute the s with the maximal volume2,
but we have developed a proxy that works well in practice. As alluded to in the proof of
Theorem 3.2, we use linear programming to find an initial assignment to s that minimizes the
L∞-distance between the center of the hypercube p and LR

θ∪{ j 7→s }. Since the distance between
the sublayer and center point is minimal, we can expect that the volume of the sublayer within
the hypercube should be maximal or near maximal. If this assignment is found infeasible, and
we backtrack, then we explore adjacent assignments s + δ, s − δ, s + 2δ, . . . , where δ = ±1
depending on orientation, in order of increasing distance.

Layer-point distance. Due to efficiency concerns as well as implementation issues with
linking GMP with other Haskell code that BLT is linked against, we compute the distance
using a conventional linear programming solver, GLPK [1], which uses IEEE double precision
floating point for its calculations. If the distance calculation is inaccurate, there is the potential
to prune a sublayer that is mistaken for being slightly too far away, and consequently BLT may
incorrectly return UNSAT. In cases where it returns SAT, the model is checked against the
problem for certainty. In principle the distance calculations can be done using exact arithmetic3

or arbitrary-precision floating point arithmetic, but we have not attempted to do so yet.

4 JPEG Preimage

To validate our work, we have applied BLT to the problem of computing preimages from JPEG
decompression.

To simplify exposition, we will restrict our attention to monochrome JPEG images that consist
of a single 8×8 block of pixels. In experiments, we have also applied BLT to color images; color

2In [8], the authors show that the related problem of computing the volume of the intersection of the unit
cube and a rational halfspace is #P-hard.

3GLPK supports this directly.

6

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

problems involve more variables and constraints, but are otherwise similar to the monochrome
case. Our restriction to images that are 8 by 8 does not effect scalability either; JPEG com-
presses each 8 × 8 block of pixels within an image independently, so computing the preimage
for a larger image is the same as finding preimages for multiple independent 8 by 8 blocks.

When compressing an image, each pixel ranges from 0 to 255 where 0 corresponds to black and
255 corresponds to white. To compress an image, JPEG performs the following steps [13]:

1. Each pixel value is shifted by −128 so that the pixel values range between −128 and 127.
2. A 2d discrete cosine transform (DCT) is applied to each block that transforms the coor-

dinate space from the image pixel values to the frequency domain. This has the effect of
separating out the image components by frequency, so that course grained qualities such
as overall brightness are represented distinctly from more fine-grained fluctuations. For a
given input block I, we denote the frequency representation by F = dct2(I). A 2d DCT
is obtained by first applying a 1d DCT to each column in the image, and then applying a
1d DCT to each row in the image.

3. A quantization step is performed in which each coordinate in the frequency representation
F is quantized to the nearest multiple of an associated value in a quantization matrix
Qlvl ∈ Z8×8. The quantization matrix is constructed so that high-frequency components
are rounded to more course grained values than low-frequency components.
JPEG allows users some control over the tradeoff between the compression ratio and image
quality by providing a parameter lvl, called the “quality level” and ranges from 1 to 100.
The coefficients in Qlvl grow as the quality level lvl decreases.
Given the output of the frequency transform dct2(I), the output of the quantization step
consists of the rounded quotient C = round(dct2(I)./Qlvl). The division is a pointwise
(Hadamard) division, rather than an inverse linear transform.

4. Finally, a variant of Huffman compression is performed that compresses the quantized
coefficients into a string of bits. The compression is lossless, and designed to represent the
quantized coefficients in a small number of bits.

JPEG decompression just runs these steps in reverse order starting with Huffman decompres-
sion. As Huffman compression is lossless and can be directly inverted, for our constraint satis-
faction problem we begin with the rounded quantized coefficients C, and the resulting image I
can be obtained by computing:

I = round(idct2(Qlvl. ∗ C) + 128)

As an example preimage problem, suppose that we are looking for any image containing “Hello
World!” encoded as ASCII text within a block.

H e l l o _
W o r l d !

48 65 6c 6c 6f 20
57 6f 72 6c 64 21

7

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

To construct a bounded ILP problem, we take the constraints above and generate the lower
and upper bounds needed so that the final rounding function will return an image satisfying
the constraints. This gives us the two matrices L and U below:

−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
−0.5 71.5 100.5 107.5 107.5 110.5 31.5 −0.5
−0.5 86.5 110.5 113.5 107.5 99.5 32.5 −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5





255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5
255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5
255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5
255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5
255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5
255.5 72.5 101.5 108.5 108.5 111.5 32.5 255.5
255.5 87.5 111.5 114.5 108.5 100.5 33.5 255.5
255.5 255.5 255.5 255.5 255.5 255.5 255.5 255.5


With these steps, the problem then reduces finding a coefficients C ∈ Z8×8 such that:

L ≤ idct2(Qlvl. ∗ C) + 128 ≤ U.

Both the Hadamard product and inverse DCT are linear transformations, and we evaluate the
inverse DCT by evaluating the coefficients to IEEE double floating point precision. This allows
us to construct a bounded ILP problem from the equation above.

For this problem, we can compute an estimate of the number of solutions by dividing the size
of space bounded by L and U by the density of the lattice Alvl generated by the quantization
step and idct function. In Figure 1, we plot the number of solutions on a logarithmic scale.
This figure illustrates how dramatically the estimated number of solutions changes with respect
to the quality level. At quality levels 98 and higher, the number of expected solutions exceeds
10100; while less than 1 solution is expected at quality level 25 for the same constraint. In the
extreme case at quality level 1, one would only expect to find solutions in roughly 3 out of 1090

problems with a similarly sized bounds.

JPEG Quality Level
10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 N
um

be
r o

f S
ol

ut
io

ns
 (l

og
-s

ca
le

)

-100

-50

0

50

100

150

Figure 1: Number of expected solutions

We first tried applying CVC4, Yices, and Z3 to the problem by encoding the problem in a
format supported by the solver. We used SMT-LIB for CVC4 and Z3, and Yices’ native format
for it. Unfortunately, none of these tools were able to solve any of the problems at quality levels
from 1 to 100 within a 1 hour cutoff for each problem. We also ran all three solvers without
success for over two months on problems at quality levels 99 and 1.

8

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

We have had much better success when BLT is applied to these problems. In our testing, BLT
has been able to find solutions to all problems at quality level 27 and higher. BLT found that
the problems at quality levels 1 through 18 were unsatisfiable. We include a chart of BLT’s
runtime in Figure 2. In the plot, solid points denote problems for which BLT returns SAT,
whereas × points denote problems where BLT returns UNSAT. The large number of problems
with roughly constant runtime (mostly on the right side of the plot) have the property that
the Babai point (mentioned in section 3.2) is already a solution and thus almost no search is
needed. In the filled region between levels 19 and 26, BLT failed to terminate in the 1 hour
cutoff.

We should note that BLT is performing floating point arithmetic, and so when BLT returns
unsat there is a risk that floating point rounding error lead to BLT detecting a branch was
infeasible when it was in fact infeasible. This may also account for some of the performance
gap, between BLT and the above solvers, but we suspect it is unlikely that precision alone can
account for the more than 6 orders of magnitude runtime difference we have observed above.

Figure 2: BLT Runtime vs. Problem Level

5 Related and Future Work

Related Work. Our work builds upon the well-known Schnorr-Euchner algorithm for solving
the closest vector problem. Prior to developing BLT, we used the closest-vector solver in
fplll [10] to solve problems. It uses the L2 norm, and thus is not a decision procedure.
However, we found that it could often find satisfying assignments at quality levels greater than
60 despite the lack of completeness.

LattE is a program for enumerating lattice points in a rational polytope [5]. This is asking
strictly more than the question we’ve discussed. LattE is competitive with commercial branch-
and-bound solvers, the same solvers which perform poorly on the DCT problems in section 4.
We attempted to evaluate LattE on our DCT problems, but found that it would crash given a
16 GB memory limit.

Future Development. We are still working on developing BLT, and have plans to continue

9

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

testing it on a wider variety of challenge problems. We plan to enable the L∞ distance calcu-
lation to use exact arithmetic. We also plan to explore ways to solve problems with one-sided
bounds via heuristics, and ways to infer unsatisfiable subsets of constraints so that BLT can
be integrated into an SMT solver. Finally, we would like to integrate techniques from SAT
community such as conflict-driven-clause learning into the ILP search performed by BLT. The
later should help improve its performance on hard problem instances.

More broadly, it also seems interesting to explore how the calculus and heuristics that BLT
uses can be integrated into other ILP solvers, such as those based on cutting planes (e.g. [11]).
Those algorithms are able to work on more general problems as they do not require explicit
upper and lower bounds for all linear expressions. On the other hand, BLT appears to be more
effective at making effective decisions within the search.

Acknowledgements. The authors would like to thank Dejan Jovanović, Grant Passmore, and
the reviewers for comments that helped improve this paper.

References

[1] GLPK (GNU linear programming kit). Available at http://www.gnu.org/software/glpk.
[2] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. Information

Theory, IEEE Transactions on, 48(8):2201–2214, Aug 2002.
[3] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim

King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV 2011, volume 6639 of Lecture Notes
in Computer Science. Springer, 2011.

[4] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag New York,
Inc., New York, NY, USA, 1993.

[5] Jesus de Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective lattice
point counting in rational convex polytopes. Journal of Symbolic Computation, 38(4):1273–1302,
2004.

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS 2008, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[7] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided Verifi-
cation (CAV’2014), volume 8559 of Lecture Notes in Computer Science, pages 737–744. Springer,
July 2014.

[8] M.E. Dyer and A.M. Frieze. The complexity of computing the volume of a polyhedron. SIAM
J. Computation, 17:967–974, 1988.

[9] P. van Emde-Boas. Another NP-complete partition problem and the complexity of computing short
vectors in a lattice. Report. Department of Mathematics. University of Amsterdam, 1981.

[10] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the shortest and closest
lattice vector problems. In Coding and Cryptology - Third International Workshop, IWCC 2011,
volume 6639 of Lecture Notes in Computer Science, pages 159–190. Springer, 2011.

[11] Dejan Jovanovic and Leonardo de Moura. Cutting to the chase – solving linear integer arithmetic.
J. Autom. Reasoning, 51(1):79–108, 2013.

[12] H. Lenstra Jr. Lattices. Algorithmic number theory, pages 127––181, 2008.
[13] William Pennebaker and Joan Mitchell. JPEG: Still Image Data Compression Standard. Springer,

1993.
[14] C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer

Science, 53:201–224, 1987.

10

http://www.gnu.org/software/glpk

Bounded Integer Linear Constraint Solving J. Hendrix and B. Jones

[15] C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Mathematical Programming, 66(1–3):181–199, 1994.

11

	Introduction
	Preliminaries
	The BLT Decision Procedure
	Enumerating Lattice Elements
	Implementation Decisions

	JPEG Preimage
	Related and Future Work

